Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
ssrn; 2022.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.4175962
2.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2007.02160v1

ABSTRACT

Due to immature treatment and rapid transmission of COVID-19, mobility interventions play a crucial role in containing the outbreak. Among various non-pharmacological interventions, community infection control is considered to be a quite promising approach. However, there is a lack of research on improving community-level interventions based on a community's real conditions and characteristics using real-world observations. Our paper aims to investigate the different responses to mobility interventions between communities in the United States with a specific focus on different income levels. We produced six daily mobility metrics for all communities using the mobility location data from over 100 million anonymous devices on a monthly basis. Each metric is tabulated by three performance indicators: "best performance," "effort," and "consistency." We found that being high-income improves social distancing behavior after controlling multiple confounding variables in each of the eighteen scenarios. In addition to the reality that it is more difficult for low-income communities to comply with social distancing, the comparisons between scenarios raise concerns on the employment status, working condition, accessibility to life supplies, and exposure to the virus of low-income communities.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.29.20085472

ABSTRACT

The research team has utilized privacy-protected mobile device location data, integrated with COVID-19 case data and census population data, to produce a COVID-19 impact analysis platform that can inform users about the effects of COVID-19 spread and government orders on mobility and social distancing. The platform is being updated daily, to continuously inform decision-makers about the impacts of COVID-19 on their communities using an interactive analytical tool. The research team has processed anonymized mobile device location data to identify trips and produced a set of variables including social distancing index, percentage of people staying at home, visits to work and non-work locations, out-of-town trips, and trip distance. The results are aggregated to county and state levels to protect privacy and scaled to the entire population of each county and state. The research team are making their data and findings, which are updated daily and go back to January 1, 2020, for benchmarking, available to the public in order to help public officials make informed decisions. This paper presents a summary of the platform and describes the methodology used to process data and produce the platform metrics.


Subject(s)
COVID-19
4.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2005.00667v2

ABSTRACT

One approach to delay the spread of the novel coronavirus (COVID-19) is to reduce human travel by imposing travel restriction policies. It is yet unclear how effective those policies are on suppressing the mobility trend due to the lack of ground truth and large-scale dataset describing human mobility during the pandemic. This study uses real-world location-based service data collected from anonymized mobile devices to uncover mobility changes during COVID-19 and under the 'Stay-at-home' state orders in the U.S. The study measures human mobility with two important metrics: daily average number of trips per person and daily average person-miles traveled. The data-driven analysis and modeling attribute less than 5% of the reduction in the number of trips and person-miles traveled to the effect of the policy. The models developed in the study exhibit high prediction accuracy and can be applied to inform epidemics modeling with empirically verified mobility trends and to support time-sensitive decision-making processes.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL